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We develop a treatment of bosonic strings on a general curved background in 
which the volume element and the coordinates of the worldsheet are related in 
a similar way as canonically conjugate quantities in mechanics. The resultant 
formalism is a particular variant of the multi-phase-space approach to classical 
field theory put forward by Kijowski, Tulczyjew, and others. We study conserva- 
tion laws within this framework and find that all conserved quantities are related 
to point symmetries, i.e., isometrics of the underlying spacetime. Thus, the 
symmetries of relativistic mechanics coming from Killing tensors have no 
analogue here. We furthermore deduce from the present scheme the covariant 
version of the usual phase space. 

1. I N T R O D U C T I O N  

The concep t  o f  a str ing is a d i rec t  genera l i za t ion  o f  the re la t ivis t ic  po in t  
par t ic le .  Whi le  this is a p p a r e n t  a l r eady  in the  s t a n d a r d  fo rmula t ion  o f  the  
theo ry  (Scherk ,  1975), there  is a sense in which  this fo rmula t ion  is not  very 
na tu ra l  i f  j u d g e d  by  the s t anda rds  o f  re la t ivis t ic  mechanics .  To exp la in  this 
poin t ,  let us recal l  tha t  a theory  o f  c lass ical  re la t ivis t ic  par t ic les  has  two 
ingredients :  One is the  idea  o f  a par t ic le  as a cer ta in  t imel ike  wor ld l ine  in 
space t ime.  Let us call  this  the  space t ime  v iewpoint .  The  o ther  input  comes  
f rom the desc r ip t ion  o f  the  par t ic le  by an ac t ion  p r inc ip le  and  consists  in 
v iewing the par t ic le  as t rac ing  out  a t ra jec tory  in a space  F which  is e q u i p p e d  
with a symplec t i c  s t ructure.  Let us call  this the  phase  space  v iewpoint .  
Lucki ly ,  bo th  s tructures  are  c losely  re la ted ,  namely  F is given by T ' M ,  the  
co tangen t  bund le  of  space t ime  with its na tu ra l  symplec t ic  s tructure.  Fur ther -  
more ,  the pa th  in F is a " l i f t "  o f  the wor ld l ine  in M. 

N o w  cons ide r  strings. F r o m  the space t ime  v iewpo in t  a str ing sweeps  
out  a t imel ike  ex t remal  wor ldshee t  in space t ime.  W h e n  one now tries to fit 
s tr ings into the phase  space  pic ture ,  there  seems to be only one way:  this 
is by look ing  at the " s p a c e  o f  all strings in space t ime ."  Since strings are 
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extended objects, their motion is governed by partial (as opposed to 
ordinary) differential equations. Thus, due to the nature of these equations, 
phase space becomes an infinite-dimensional space, which, in fact, carries 
a (pre-) symplectic form. This form, i.e., its value at a point, is now given 
by a certain integral over cross sections of the worldsheet corresponding to 
that point. Hence, this phase space, from the spacetime viewpoint, is a 
global thing in which the picture of  the string as a local object in spacetime 
seemingly disappears. In addition, this space has the disadvantage of not 
possessing a natural cotangent bundle structure, since introducing coordin- 
ates and canonically conjugate momenta involves a decomposition of strings 
into space and time. 

The above description of strings (which, with suitable qualifications, 
could be given for any classical field theory derived from an action prin- 
ciple-relat ivis t ic  or nonrelativistic) suggests the question of whether there 
does not exist a finite-dimensional space which can play the role of the 
cotangent bundle F = T * M  in the case of particles. We are thus led to the 
geometrical approach to the calculus of variations of multiple integrals, 
which, since the end of  the 19th century, has been studied mainly by pure 
mathematicians (Volterra, 1890; Caratheodory, 1929; Dedecker, 1953) and 
has somewhat gained in attention recently (Kijowski and Tulczyjew, 1979; 
Kastrup, 1983; Binz et al., 1986; Gotay et al., 1988). Unfortunately, there 
is in general no unique or clear-cut finite-dimensional generalization of 
symplectic geometry to multidimensional action principles (Dedecker, 
1977). So, in order to find the "right" answer, it is perhaps best to rely on 
a case-by-case analysis. 

At this stage we invoke a second important feature of relativistic 
mechanics we have so far ignored, but which one would like to copy in 
string theory. This concerns the reparametrization invariance of the theory 
and the way in which it is enforced: Namely, this is done by constraining 
the particle momentum Pa to lie on the mass shell: 

ab  _ m  R PaPbg = (m >0 )  (1.1) 

where m is the mass of the particle. Here Pa is not to be viewed as a velocity, 
but as a momentum related to velocity by pa = m(--~2)- l /2ga~b.  In par- 
ticular, equation (1.1) has nothing to do with fixing the worldline parameter 
to be proper time, as is sometimes believed--just as the analogous constraint 
for strings involving the string tension has nothing to do with partially fixing 
the parametrization by going to the conformal gauge. Rather, this constraint 
should be viewed as saying that (1 /m)pa is the same as the volume element 
on the worldline induced by the metric of spacetime. In a good, that is to 
say, manifestly reparametrization-invariant theory of strings it thus seems 
desirable to deemphasize parametrization-dependent objects such as the 
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differential of  the map embedding the string into spacet ime--which figures 
prominently in the standard formulation as a velocity-type var iab le - -and  
put to the forefront Pab, the induced volume element on the worldsheet, 
which just depends on orientation. 

We sum up our discussion of relativistic mechanics by saying that its 
structure is very special in two respects: First, there is a "preestablished 
harmony"  between the spacetime and the phase space picture expressed 
by the equation F = T * M .  Second, there is a relation between velocities in 
M and momenta  in F which is reparametrization-invariant by virtue of  the 
mass shell c o n s t r a i n t  p a p b g  ab = - m  2. 

In Section 2 it is our aim to write down a formulation of classical 
strings which mimicks the above two features of  relativistic mechanics [for 
the mechanics case see, e.g., Sniatycki and Tulczyjew (1971)]. The space 
T * M  of  mechanics now gets replaced by a "multisymplectic" space F, 
namely F = A 2 T * M ,  the bundle of antisymmetric covariant 2-tensors Pab : 
PEahl over M. The space F carries a basic 2-form and a "canonical"  3-form 
1~, in contrast to the basic 1-form and the symplectic form of mechanics. 
The dynamical  equations are derived from a manifestly reparametrization- 
invariant action principle in the constraint submanifold ~ obtained from 
F by the string tension condition P a b P c d g a C g  bd = --2 T 2. In Section 3 we study 
conservation laws. We find, as opposed to the mechanics case, that the only 
symmetries of  the theory are the ones coming from a symmetry of spacetime. 
For the latter we write down the corresponding conserved quantities. In 
Section 4 we apply the method of Kijowski and Szczyrba (1976) to obtain 
the covariant version of the infinite-dimensional space of all strings, referred 
to at the beginning of this section. Such covariant phase spaces have recently 
been studied by a number  of  authors (Woodhouse,  1980; Ashtekar et al., 
1987; Crnkovid, 1988). Section 5 gives a summary and discussion of our 
results. In the Appendix we outline the local differential geometry underlying 
the minimal surface equation when formulated in terms of the quantity of  
prime interest in this paper,  namely the volume element of the surface. 

Let us remark, finally, that ideas loosely related to ours have been 
pursued in Nambu (1980) and Kastrup and Rinke (1981), from the point 
of  view of  a Hamil ton-Jacobi  type theory of strings. 

2. THE BOSONIC  STRING IN M ULTIS YMPLECTIC  FORM 

The (M, g~b) be a spacetime of arbitrary dimension n > 2, the signature 
of  g~h being ( -  + �9 �9 �9 + ). Define the extended multisymplectic phase space 
F by F = A2T*M. In canonical coordinates (P~b, x ~) we can write down a 
2-form | and a 3-form ~ as 

0 = p . b d X  ~ ^ dx b (2.1) 
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l~ = dO = dpab ̂  dx a ^ dx  b (2.2) 

(For reasons of  convenience we sum over all a and b, whereas, of  course, 
the Pab are independent coordinates only for a < b. It will be clear that 
properly taking this into account would just introduce awkward factors of  
1/2 which drop out of  final results.) Obviously | and hence f~, is naturally 
defined. Next take as constraint submanifold the subbundle ~ T  = ~ of r 
given by H(p ,  x ) =  0, where 

H(p,  x) =lpabPcdgaC(x)gbd(x)+ V 2 ( T > 0 )  (2.3) 

carries a 2-form O = 0 >  and a 3-form co = dO. 
Let Q be either a square (for open strings) or S 1 x R (for closed strings). 

We consider embeddings s: Q--> M, given locally by y~ ~ x a = Xa(y~) ,  
such that the embedded surface S is timelike. Given an orientation for Q, 
we can lift s into an embedding o-: Q--> ~ by setting y~ ,--> (Pab = Pab(Y"), 
X c = XC(y~)), where (for the notation see the Appendix) 

P~b = 2T[(9~X') 2 -X2X'2]- l /2g~c(X)gbd(X)X[cX'dl  (2.4) 

Let now cr be an embedding of  Q into ~. We define the action A ( a )  by 

A(tr) = f cr*O (2.5) 
d Q 

Note that A(o-) does not depend on the parametrization of Q. When o- is 
a lift of  an embedding s in the above sense, which it need not be a priori, 
A(o') = ~d(X; 9~, X ' )  is, of  course, T times the induced surface area of  S, 
that is to say, the Nambu  action for s. 

In order to find the critical maps tr of  the functional A, take a family 
o-~ of maps and define the vector field Y along tr = O'o by Y =  (d/de)l~=ocr ~. 
From standard formulas in differential geometry (see, e.g., Michor, 1980) 
we find 

~e  A(tr~)= I t r * ~ y O = f  o ' * [ Y I d O + d ( Y A O ) ]  (2.6) 
e=0 O O 

Supposing o-~ to be independent of  e on the boundary oQ of Q, so that Y 
vanishes on 0 Q but is otherwise arbitrary, we obtain as condition of criticality 
for tr the relation 

t r * ( Y I  co) = 0  for all Ytangent  to ~ (2.7) 

Equation (2.7) is the usual form of equations of  motion in the multisymplec- 
tic scheme (see, e.g., Kijowski, 1973). In order to evaluate (2.7), note that, 
with i being the inclusion of ~ into F, equation (2.7) can be written as 

o-*i*( Y d f~) = (i o o')*( Y _3 ~ )  = 0 (2.8) 
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for all vector fields on F which, at points of  ~, are tangential to ~. Locally 
i ocr is given by (Pab, Xc)= (P~b(Y), XC(y))  such that H(P,  X ) = 0 ,  and Y 
is given by Y =  a.b(p, X) O/Op.b + fla(p, X) O/OX ~ subject to 

aab(P, X ) g ~ ( P ,  X)gbd(P, X)P~d 

+ P~bP~dgbd(p, X ) ~ ( P ,  X)a~g~(P,  X)  = 0 (2.9) 

Writing 

�9 a a a + X , .  a Zl = P,,h ap,,b + ~ "  and Z2 - ' - -  P a b  
a X  a Opab a x  a 

we find that equation (2.8) takes the form 

g l l  I _l Z2 _1 a = 0 (2.10) 

which is the same as 

(PabX '~ - P% x a ) f l  b + 2ox'ba~b = 0 (2.11) 

This, using H = 0 and equation (2.9), and writing p~b=  g a e g b d p r  d implies 

)([~X'b] = CP ~ (2.12) 

PabX'" - P'~bX" = C(Obg'~C)P,~dPf (2.13) 

where 

C = +2 T [ (XX ' )  2 - X2X '2]-1/2 (2.14) 

Note that not all points (Pab, X c) can lie in the image of  dynamically 
admissible o-'s, but only those for which Pab is decomposable,  i.e., satisfy 
the Plficker relation PaEbPcel = 0. It would no doubt be preferable to try to 
take instead of  F the "space of true volume elements" in which the Plficker 
relation is imposed from the outset. 

We now demand s = ~r o or, where ~r is the canonical projection in ~, 
to be also a diffeomorphism, so that S =  s (Q)  is again orientable and a 
consistent choice of  sign can be made in (2.14). (In mechanics the analogous 
assumption is superfluous if spacetime is time-orientable, since in this case 

is known to have two connected components,  so that no consistency 
problem can arise. In the present case ~, and also the subset of  ~ for which 
Pab is decomposable,  is connected.) 

Thus, merely from the variational principle (2.6), tr is for some orienta- 
tion of Q the lift on embedding s:Q-~ M, and hence A(tr) is proportional  
to the surface area of  S = s(Q).  

In equation (2.13) we may now write Pah = XcocP,~, P% = X'Co,.P~b, 
whence 

2R[cx'olor = C(Obg~C)PadP~. d (2.15) 
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which, in turn, is the same as 

pabVaPbc = 0 (2.16) 

Thus, the variational principle (2.6) is equivalent to equation (2.16), supple- 
mented with 

pabpab = - 2  T 2 (2.17) 

and the surface S with P,b as volume element is an extremal surface (see 
Appendix).  

Since O does not contain dp~b terms, it is clear from the above that 
one could allow arbitrary variations Of Pab o n  the boundary of  Q preserving 
the constraint (2.3), i.e., only 7r o tr has to be independent of  e on 8Q. I f  
more general variations for tr are allowed on part  of  the boundary,  one 
obtains the usual open-string boundary conditions on that part. The presence 
of these boundary  conditions slightly complicates the content of  the next 
sections. We shall thus, for simplicity, assume that Q -- S ~ x R from now on. 

3. CONSERVATION LAWS 

We first look at transformations which generalize the notion of Hamil- 
tonian vector field in the case of  mechanics. A vector field Y on F is called 
canonical iff 

&ayf~ = 0  (3.1) 

Since d t l  = 0, this is equivalent to 

d( r _J fl) = 0 (3.2) 

In mechanics, the analogue of (3.2) gives an isomorphism between closed 
(in that case: 1-) forms of  F and canonical vector fields Y. In the present 
context, this is no longer true, since the linear map l l# :  Y~ T F ~  Y _J 12 
A 2T*F is not surjective. Thus, the equation 

r _d ~ = - d F  (3.3) 

does not have a solution Y for a general 1-form F on F. To see what the 
restrictions are, write 

0 a O 
Y = O ~ a b ( p , x ) ~ p a b +  fl ( p , X )  ox  ~ (3.4) 

Then equation (3.2) takes the form 

a[,h.,.3 dx a ^ dx  h ^ dx~'+ a~b ''d dp,.~ ^ dx  a ^ dx  b 

+ 2t[3",r dpab A dxC A dxb -- 2t[3'~'Cd dp~.d A dpab A dxb = O (3.5) 
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where we use the convent ion  a , ,  = (O/Oxa)a and a "ab= a '[~bl= (O/OPab)Ol. 
From the last term in (3.5) we obtain 

6Ee fl~l,cd : = 6t~fl dl'e~ (3.6) 

After taking suitable contract ions,  equat ion (3.6) is seen to imply 

f la 'bc=O~fla =/3a(X) (3.7) 

Hence,  f rom the first three terms in (3.5), OLab is o f  the form 

o~,,b(p, X) = 2~cta(X)pb]c + Yah(X) (3.8) 

with 

Y[ob:l = 0 (3.9) 

Thus,  Y can only be a l inear combina t ion  Y = U + V with 

a 
- - ,  Ytab:l = 0 (3.10) U ~-- "Yab(X) aPab 

V = 2 f l  ~(x lpbc  O--~+fl'(x) O_ (3.11) 
" Opab OX 

U is noth ing  but  the natural  shift a long the fibers o f  F by the closed 2-form 
Y~b dx ~ ̂  dx b on M, whereas V is the canonical  lift to F o f  the vector field 
f l~(x)  O/Ox a on M. We can now locally solve (3.3) in terms o f F ,  obtaining,  
modulo  addi t ion o f  closed 1-forms on F, 

Fu = - % , ( x )  dx a, 7E.,b3 = Yah (3.12) 

Fv = --2fla(x)p~b dx ~ = V 2 19 (3.13) 

Note  that Fv exists even globally and satisfies ~ v  19 = 0 rather than just (3.1). 
We now turn to a (cont inuous)  symmetry  o f  the system. This is defined 

as a canonical  vector field Y which is tangent  to ~. Any such vector field 
gives rise to a conserved quanti ty as follows: Let F be the 1-form on F 
generat ing Y via (3.3). Since the map  11 e is injective, Y is unique provided  
it exists. Let o- be a solution o f  equat ion (2.7) and consider  the quanti ty 
f =  o-*F on Q. One finds d f =  tr* dF = - t r * (  Y .3 to) = 0, whence f is closed 
on Q. Thus,  taking a closed cross section Z c Q, it follows that  the quanti ty 

re (Y)  = f f (3.14) 

is in fact independent  o f  Z. In order  to find these quantities explicitly, we 
have to look at vector fields Y = U + V of  the previous section, which satisfy 

Y ( H )  = 0 at points where H = 0 (3.15) 
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o r  

( 'Yab -'[- 2flC, aPbc)P ab q-PabPcdgaC, e• egbd = 0 w h e n e v e r  pabp ab + 2 T 2 = 0 

(3.16) 

Using that Yah, /3 c depend only on x, one easily finds that this can only be 
true provided Yah is zero and 

g ab, c ~ c _ 2g  C(b~ a),c = 0 (3.17) 

that is to say,/3 ~ a/ax a is a Killing vector of  the spacetime M. The associated 
conserved quantity is now given by equation (3.13). It is instructive to view 
this quantity in a slightly different manner. Recall that the map o- is obtained 
as a lift from an embedding s. Use this operation of "lift" to pull back F 
to a 1-form ~ on S =  s(Q),  namely 

--~a : 2Pabt ~b (3.18) 

Conservation along S now takes the form 

1 
h[ ~a'hb ]b'v a,~b, = - - f ~  PabPa'b 'v  ~,q~ b, = 0 (3.19) 

where the last equality is easily verified using equation (2.16) and Killing's 
equation V(~flb)= 0. Note that one has here a direct generalization of the 
well-known textbook argument concerning conserved quantities along 
geodesics (Wald, 1984). In the latter case, however, one also finds quantities 
of quadratic or higher power in momentum when spacetime admits Killing 
tensors (Sommers, 1973). Unfortunately, these have no analogue here. 

4. THE COVARIANT PHASE SPACE 

We now apply the general method of Kijowski and Szczyrba (1976) 
to derive from the above setting the covariant phase space F of string theory. 
We shall be completely formal here and neglect all analytic issues stemming 
from the infinite dimensionality of I'. We first review the formulas in 
Kijowski and Szczyrba (1976), using, for simplicity, local coordinates 
in ~. Let u A be such coordinates [where A = I  . . . .  , n + � 8 9  
�89 n - 2 ) ]  and let o- be given locally by y~ ~ o'a(yC~). Then the equation 
cr*(X _1 to) = 0 takes the form 

ora,ot (Y)~ (Y)toABC (o'(y)) = 0 (4.1) 

Let p be the element of  F corresponding to the map o-. A tangent vector in 
at the point p is geometrically a tangent vector ~: in ~ defined along or 

in such a way that it connects o- with an infinitesimally nearby solution of 
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equation (4.1). In other words, ~r is given by a solution ~A(y)  to  the linearized 
version of (4.1), i.e., 

2~a,c~ (Y) O'B,~ (Y)toAIJC (o'(y)) + o'A,tx (y) cr B,e (y)toABC, D(O'(y))~ D (y )  = 0 
(4.2) 

with o'(y) corresponding to the given point p in I'. Fix a pair of solutions 
(~:a, r/A) to equation (4.2) and consider the 1-form on Q given by 
o-*(~: / 71 _J to). Now define the following integral W over some closed cross 
section E of  Q ~- S 1 x R: 

W(s r, ~7) = Is  o-*(~: d r/_J to) (4.3) 

Using equations (4.1) and (4.2) and the fact that dto is zero, it is now a 
straightforward matter to prove that d(o-*(~: d T/J to)) is zero on Q. Thus, 
W(ff, ~7) in (4.3) is independent of E and hence a well-defined 2-form 
on F. It is equally simple to show that the 3-form on I" given by the formal 
exterior derivative of W vanishes. Thus, (1", W) is a presymplectic space. 
One expects W to be degenerate with respect to vectors at the point p e 
corresponding to a reparametrization of o-, viewed as a surface in ~. But 
this easily follows from equation (4.3), since such vectors at p are just vector 
fields ~: along o- which are tangent to tr, i.e., ~a a t~ = f  ,~c , and for those 

~cr*(~ J r I _] to) = o 'C, ,~a(y) 'qB(y) toaBc(O' (y ) )  dy '~ 
c = or ,,~(y)o'A,f~(y)cr dy" 

= cfJ(y) �9 0 = 0 (4.4) 

We now proceed to explicitly evaluate W in the present circumstances, 
where u A= trA(y '~) corresponds to (Pab = Pab(Y), X c= XC(Y) ) satisfying 

p,b = 2 r [  (.,~x') 2 - X2X'2]-'/2,,~[aX'b] (4.5) 

and the equation containing Dab and Pta b is not needed at the moment. 
In order to obtain #A(y )=  ~crA(y)= (3P, b(Y), &XC(Y)), we have  to vary 
equation (4.5), thus obtaining a relation between ~P,b and 3X ~. For sim- 
plicity, we write this down only in the case where g,h is flat. It is clear that 
the general case is obtained by replacing partial derivatives by covariant 
ones in the final expression for W. We obtain 

8P, b = -2P~[,  Ub]dSXd, c (4.6) 

where U"b = ~ab--ha b is the operator projecting on the spacelike ( n - 2 ) -  
space orthogonal to the world sheet S in M. 

We now have to evaluate the integrand in equation (4.3), using 

~A = (SP,~b, 8 X "  = ,~c), r l  A = (SP 'ab,  8 X  'c = r l  c) 
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subject to equation (4.6). Since C A and ?7 A of this form are already tangential 
to ~, we have 

o-*(~ J ~7 J o)) = cr*(~ J ~7 J •) (4.7) 

Using equation (2.2), we find 

~JrlJlI=2/~a~P'bdxb--2~Ta6Pabdxb+2Sea'qbdpab (4.8) 

Note that (4.8) is to be viewed as a 1-form on ~, defined on the image 
of or. We now insert (4.6) into (4.8) and pull back the resulting expression 
by the map or. In the spirit of  the Appendix, we write the resultant 1-form 
on Q as a 1-form wo on M which is purely tangential to S = s(Q).  With 
this understanding we get 

-�89 "q) = (pobu cd - habpcd)(~cVblTd -- "qc7b~a) -- habVb(Pcd~en d ) (4.9) 

where we have reintroduced the covariant derivative Va in order to cover 
the general case where gob can be curved. The last term in (4.9) does not 
contribute to W((, 7). Using the methods of the Appendix, it is now 
instructive to verify explicitly what in fact we know from general principles, 
namely that the integral S~ wa(~, 71) dx ~ over a closed cross section E of S 
vanishes when ~ or ~7 is tangent to S. We leave this as an exercise. On the 
other hand, checking that ~ w~ dx ~ is independent of  E, that is to say, 

p a b V a W  b = 0 (4.10) 

is not so easy, since this involves the complicated differential equation 
satisfied by ~:0 and ~7 ~ which results from the linearization of equation 
(2.13), or, equivalently, pobVoPb~ =0.  This of  course is just the Jacobi 
equation for minimal surfaces which can be found in the literature (Simons, 
1968). An easy derivation along the lines of  the standard textbook argument 
for geodesics (Wald, 1984) could run as follows: 

Since the part of  ~ which is tangential to S does not contribute to W, 
we can assume ~ to be orthogonal to S, i.e., U a b ~  b = ~b. We can in addition 
choose it in such a way that 

~ r  = 0  (4 .11)  

(Of  course, as opposed to previous sections, 5(r is now the Lie derivative 
in M.) Using (A.1)-(A.3) (4.11), and commuting derivatives, it is now 
straightforward though tedious to show that 

UarpdbVd(phcU+hVc~h)-- v :  ~ b ~ a ~ + ~  - :~bd . . . . . .  c ~ r -  U~ (4.12) 

where K;c  is the extrinsic curvature of  S and R%~d is the curvature tensor 
defined by 2~7[a~TblO~:. = RabcdO~d. The left side in equation (4.12) is essentially 
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the d'Alembertian on S acting on vector fields normal to S. Since S is 
timelike, this is a linear hyperbolic equation for ~ .  

When both ~: and ~7 are orthogonal to S, equation (4.9), modulo an 
exact form, becomes 

--�89 77) = pab(~CVb~c -- "rlCVb~c) ( 4 . 1 3 )  

Using (4.12) and the symmetry properties of  K~,c a n d  Rabc d, one now verifies 
equation (4.10) easily. 

It is clear that the analogue of equation (4.13) for m-dimensional 
objects (m < n) just involves adding m - 1  indices to P~b for the volume 
element of  the m-worldsurface S swept out by the m-brane. This yields the 
m-form wa,. .... whose integral over m-dimensional cross sections of  S is 
the presymplectic form on the covariant phase space of m-branes, 

This ends our derivation of the covariant phase space of string theory. 
One might wonder how it comes that one has apparently just one constraint 
in the present canonical theory, namely Pub Pub ---- - -2  T 2, while there are two 
constraints in the standard one (Scherk, 1975). The answer is that the 
variables of the standard phase space are obtained by decomposing the 
covariant ones in such a way that the equation pabVaPbc = 0 is turned into 
an initial-value problem. It is in this process that the remaining constraint 
emerges. 

5. CONCLUSION AND COMMENTS 

In this paper we have rephrased the theory of the classical bosonic 
string in arbitrary spacetimes in the setting of a particular variant of  multi- 
symplectic geometry. We have argued that this scheme has the advantage 
of making manifest the relevant structures of the theory and putting greater 
emphasis on the analogy with the relativistic particle than the standard 
formulation. We have seen that the present approach lends itself easily to 
a systematic search for conserved quantities. It was gratifying to see that 
an elegant version of the infinite-dimensional space of strings can be found 
directly from the multisymplectic framework. 

A number of fairly obvious generalizations suggest themselves: One 
can study m-branes by considering A '~+1T*M instead of A2T*M, and one 
could introduce interactions by introducing potentials into the Hamiltonian 
H. One could perhaps dispose of the spacetimr metric g~b by showing that, 
e.g., for strings, one really needs only the "areal"  metric on the antisymmetric 
2-tensors derived from it, namely g~'[agb]d. 

While the present formulation is useful in such questions regarding 
the general structure of the theory, it would be much more interesting to 
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refine this formulation in such a way as to shed light on some of the more 
specific properties of strings, such as the ("complete")  integrability of 
the equations when M is flat or, more ambituiously, finding a "finite- 
dimensional" (in the phase space sense) origin for the occurrence of  critical 
spacetime dimensions in the quantum theory. 

As for the multisymplectic formalism in general, one should perhaps 
keep in mind that, despite its elegance, the replacement of the canonical 
2-form of mechanics by a canonical ( m +  D-form (for a field theory with 
m independent variables) is a technically conservative step, but, largely due 
to the resultant asymmetry between coordinate-type and momentum-type 
quantities, conceptually a radical step which should consequently be judged 
by its potential to make radical predictions or treating problems which are 
intractable by more conventional means. Most importantly, one would like 
to see a new kind of quantum theory emerging from the multisymplectic 
formalism, which is not beset with the same problems as standard quantum 
field theory. Whether this is possible is, however, completely unclear at 
present. 

A P P E N D I X .  T I M E L I K E  2 - S U R F A C E S  

Let Q be an orientable 2-manifold with local coordinates y~ (a  = 1, 2). 
Take a timelike 2-surface S c M given as the image of an embedding s of 
Q into M. Locally, s can be written as y~--~ x a =Xa(y~) .  Define 3[ a=  
(O/Oyl)X a, X 'a= (O/oyl)X a. Taking an orientation for Q and using some 
normalization, one has a fixed surface element p~b on S, which is given as 
a unique nonzero function times X ~ X  'hi. It is computationally convenient 
to imagine p~b being given as a tensor field defined on a whole neighborhood 
of S in M. Of course, all formulas depend only on the values of pab a t - -and  
its derivatives along-- the surface S. We are thus led to look at tensors 
pab= p~abJ which satisfy 

pa[bp~d] = 0 (A.1) 

pd[aVdpbc] = 0 (A.2) 

pabpab = - 2 T  2 (A.3) 

(A.1) states the decomposability of p~b into the exterior product of two 
vectors which, according to (A.2), are surface-forming. [Note that V~ in 
(A.2) could be any torsion-free derivative operator.] Equation (A.3) is a 
normalization convention consistent with string terminology where T plays 
the role of  string tension, the sign being determined by the timelike character 
of S. The intrinsic metric h~b of the surface spanned by p,h is given by 

hab = 1_~ p,~.pc b (A.4) 
1 -  
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The mixed object ho b plays the role of the operator projecting on directions 
tangential to S. Let A a be tangential to S, i.e., 

A a = hab Ab 6~.5) 

Then the quantity h,a'(Va,h b _ hbbv~,h b') is "tensorial with respect to h a,,, 
i.e., independent of  Vaa when h ~ is replaced by ah ~. Thus, there exists a 
tensor Keab such that 

a '  b a '  b b '  b c ha V~,h (A ;~ = ha hb' Va'h +K,,ch 

Obviously hobKbc = 0. Inserting (A.5) into the left side of (A.6), we find 

T2K~,c = T2hbb'hcc'Vb,hc, a 

= hbb'hcC'(Pc,dVb,p da -}- pdaVb,Pc ,d)  

: hbb'Pcd•b,p da --2hbb'hcapC'dvb,Pc,d 

= hbb'PcdVb,P d~ (A.7) 

where we have used (A.1) in the third line and (A.3) in the fourth line. 
Next, contract (A.7) with pbc. One obtains 

T2pbCKabc = p d c p b ' c v b , P d  a = - - p d c p b ' d V b , p a c  = -- T2pbCK~c  = 0 (A.8) 

where (A.2) and (A.3) have been used in the third line. Thus, it follows 
a a 

that K~c = K(bo. Kbr is called the second fundamental tensor or extrinsic 
curvature. S is an extremal surface iff hObK~b = 0 or, equivalently, 

pabV~Pbr = 0 (A.9) 

The ex't'ension of these considerations to surfaces of  arbitrary dimension 
(and hence membranes, etc.) is fairly obvious. 
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Note added. After completion of this work I learnt that the idea of 
using F = A m+l T*M as the multi-phase space of m-dimensional extended 
objects appears already in W. M. Tulczyjew, Annales de l'Institut Henri 
Poincard, 34A, 25 (1981). However, the applications in Sections 3 and 4 are 
n e w .  
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